RPH MINGGU 3 :
12 – 16 JANUARI 2015
Date/Day
|
12
January 2015 / Monday
|
||||||||||||||||||||||||||||||||||||||||||||
Class
|
5MPV
[25 students]
5S3
[30 students]
|
||||||||||||||||||||||||||||||||||||||||||||
Time
|
0705
– 0815
1055
– 1130
|
||||||||||||||||||||||||||||||||||||||||||||
Subject
|
Mathematics
|
||||||||||||||||||||||||||||||||||||||||||||
L.
Area
|
1.0
: Number Bases
|
||||||||||||||||||||||||||||||||||||||||||||
L.
Objective
|
1.1 : Understand and use the concept
of number in bases two, eight and
five.
|
||||||||||||||||||||||||||||||||||||||||||||
L.
Outcome
|
(i) : State zero, one, two, three, ….., as a
number in base
(a)
two, (b) eight ,
(c) five
(ii) : State the value of a digit of a number
in base
(a) two, (b) eight,
(c) five
(a) 110012
The value of the underlined
digit = 1 x 23 = 8
(b) 213768
The value of the underlined
digit = 2 x 84 = 8192
(c) 404135
The value of the underlined digit = 4 x
52 = 100
(iii) : Write a number in base
(a)
two, (b) eight ,
(c) five
in expanded notation.
(a) 1012 = 1x 22
+ 0 x 21 + 1 x 20
(b) 47168 = 4 x 83
+ 7 x 82 + 1 x 81 + 6 x 80
(c) 120345 = 1 x 54
+ 2 x 53 + 0 x 52
+ 3 x 51 + 4 x 50
|
||||||||||||||||||||||||||||||||||||||||||||
L.
Activity
|
1.
Introduce the syllabus for Form 5 Mathematics to the students.
2.
Explain example 1, 2 and 3 to the students.
3.
Allow the students to do Check Point 1, 2 and 3 as an exercises.
4.
Guide the students in solving the questions.
5.
Discuss the solution for each question with the students
|
||||||||||||||||||||||||||||||||||||||||||||
CCTS
|
Differentiation,
Problem Solving
|
||||||||||||||||||||||||||||||||||||||||||||
Noble
Value
|
Cooperation
, Responsible
|
||||||||||||||||||||||||||||||||||||||||||||
Teaching
‘s Aids
|
Modul
Pengajaran & Pembelajaran Matematik Tingkatan 5
[NILAM
Publication Sdn. Bhd.]
|
||||||||||||||||||||||||||||||||||||||||||||
Reflections
|
Most
of the students able to solve the exercises given with the teacher’s
guidance.
|
Date/Day
|
12
January 2014 / Monday
|
Class
|
5S2
[31 students]
|
Time
|
0945
– 1055
|
Subject
|
Additional
Mathematics
|
L.
Area
|
1.0
: Progressions
|
L.
Objectives
|
1.1
: Arithmetic Progressions [AP]
|
L.
Outcome
|
Students
will be able to differentiate Arithmetic Progressions [AP] and Geometric
Progressions [GP].
|
L.
Activity
|
1.
Introduce myself to the students and
2.
Introduce the syllabus for Form 5 Additional Mathematics to the
students.
3.
Introduce chapter 1 to the students
|
CCTS
|
Differentiating
|
Noble
Values
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
TOP
UP Additional Mathematics [Pelangi]
Modul
Bestari SPM Additional Mathematics [Ilmu Bakti]
|
Reflections
|
Most
students able to differentiate the difference between AP and GP.
|
Date/Day
|
13
January 2014 / Tuesday
|
Class
|
5S3
[32 students]
|
Time
|
0945
– 1055
|
Subject
|
Additional
Mathematics
|
L.
Area
|
1.0
: Progressions
|
L.
Objectives
|
1.1
: Arithmetic Progressions [AP]
Sequence – set of numbers written in
some particular order, T1, …Tn
Series – sum of the terms in a
sequence, Sn = T1 + T2 + T3 + ….
+ Tn
First term, a = T1
Common difference, d = Tn+1
– T1 ; n = 1, 2, 3, ……
n th term, Tn =
a +(n + 1)d
Sum of the first n th
terms, Sn =
Sn =
l – the last term
|
L.
Outcome
|
1.1.1
: Identifying characteristics of arithmetic progressions.
1.1.2
: Determining whether a given sequence is an arithmetic
progression.
1.1.3
: Terms in arithmetic progressions
(a) : Determine specific terms in
arithmetic progressions
(b) : Determine the number of
terms in arithmetic progressions
|
L.
Activity
|
1.
Explain example 1, 2, 3, 4 and 5 to the students.
2.
Allow the students to do Exercises in the class.
3.
Guide the students in solving the questions.
4.
Discuss the solution for each question with the students.
|
CCTS
|
Identifying
characteristics, Determining, Calculating, Problem Solving
|
Noble
Values
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
TOP
UP Additional Mathematics [Pelangi]
Modul
Bestari SPM Additional Mathematics [Ilmu Bakti]
|
Reflections
|
Most
of the students able to solve the questions given with the teacher’s
guidance.
|
Date/Day
|
13
January 2014 / Tuesday
|
Class
|
5MPV
[25 students]
|
Time
|
1055
– 1130
|
Subject
|
Mathematics
|
L.
Area
|
1.0
: Number Bases
|
L.
Objectives
|
1.1 : Understand and use the concept
of number in bases two, eight and
five.
|
L.
Outcome
|
(iv)
: Converting numbers in base two, eight of five to numbers in base
ten and vice versa.
|
L.
Activity
|
1.
Explain example 4 and 5 to the students.
2.
Allow the students to do Check Point 4 and 5 in the class.
3.
Guide the students in solving the questions.
4.
Discuss the solution for each question with the students.
|
CCTS
|
Converting,
Problems solving.
|
Noble
Values
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
Modul
Pengajaran & Pembelajaran Matematik Tingkatan 5
[NILAM
Publication Sdn. Bhd.]
|
Reflections
|
Most
students able to solve the questions given with the teacher’s guidance.
|
Date
/ Day
|
14
January 2014 / Wednesday
|
Class
|
5S3
[30 students]
|
Time
|
0705
– 0815
|
Subject
|
Mathematics
|
Learning
Area
|
1.0
: Number Bases
|
L.
Objectives
|
1.1 : Understand and use the concept
of number in bases two, eight and
five.
|
Learning
Outcomes
|
(iv)
: Converting numbers in base two, eight of five to numbers in base
ten and vice versa
Base two to base ten [expanded
notation]
1012 = 1 x 22
+ 0 x 21 + 1 x 20
= 1 x 4 + 0 x 2 + 1 x 1
= 4 + 0 + 2
= 610
Base ten to base two [repeated
division]
610 = 1012
2 3
------ balance 1
Base eight to Base ten [expanded
notation]
1238 = 1 x 82
+ 2 x 81 + 3 x 80
= 1 x 64 + 2 x 8 + 3 x 1
= 64 + 16 + 3
= 8310
(v) : Converting a number in a certain base to
a number in another base.
Base two to Base eight :
1100112
6 3
1100112 = 638
Base eight to Base two :
2758
2 7 5
0 1
0 1 1
1 1 0
1
2758 = 101111012
(vi)
: Addition and subtraction of two binary numbers.
Addition :
12 + 02 = 12
12 + 12 = 102
12 + 12 + 12
= 112
Subtraction :
12 – 12 = 02
12 – 02 = 12
102 – 12 = 12
112 – 102 = 12
112 – 12 = 102
|
Learning
Activities
|
1.
Explain example 4, 5, 6, 7, 8 and 9 to the students.
2.
Allow the students to do Check Point 4, 5, 6, 7 and 8 in the class.
3.
Guide the students in solving the questions.
4.
Discuss the solution for each question with the students.
|
HOTS
|
Converting,
Problems solving.
|
Noble
Values
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
Modul
Pengajaran & Pembelajaran Matematik Tingkatan 5
[NILAM
Publication Sdn. Bhd.]
|
Reflections
|
Most
of the students able to solve the questions given.
|
Tarikh
/ Hari
|
14
Januari 2013 / Rabu
|
Kelas
|
5S3
[30 orang pelajar]
|
Masa
|
1055
– 1205
|
Subjek
|
Pendidikan
Sivik dan Kewarganegaraan
|
Tema
|
1.0
: Pencapaian Kendiri
|
Unit
|
1.0
: Pendidikan Sepanjang Hayat untuk Pembangunan Negara
|
Objektif
|
Di
akhir PDP, pelajar dapat :
·
Menyatakan cirri-ciri PSH
·
Menghuraikan kepentingan PSH
·
Menerangkan langkah-langkah memupuk PSH
|
Aktiviti
|
1A
: Ciri-ciri Pendidikan Sepanjang Hayat
1. Pembelajaran Berterusan
2. Pembelajran Secara Kendiri
3. Pendidikan Secara Sama Rata
4. Pembelajaran Tanpa Had Usia
5. Pembelajaran Tanpa Sempadan Masa
6. Pendidikan Demi Pertumbuhan Sosial
1B
: Kepentingan Pendidikan Sepanjang Hayat
1. PSH merupakan satu keperluan pada masa kini.
2. Tuntutan daya saing global dan membantu modal insan
negara.
3. Oleh itu, setiap orang yang sudah menamatkan pengajian
formal perlu menuntut ilmu
agar dapat meningkatkan
pengetahuan dan kemahiran mereka.
4. Setiap individu perlu menguasai beberapa kemahiran di bawah
ini bagi memastikan pembelajaran PSH dapat diikuti dengan
lebih selesa dan sempurna.
·
Kemahiran mengurus
masa
·
Kemahiran
berfikir
·
Kemahiran
mendisiplinkan diri
·
Kemahiran
membaca
·
Kemahiran ICT.
1C
: Memupuk Pendidikan Sepanjang Hayat
·
Langkah-langkah memupuk PSH
1. Meningkatkan kemahiran membaca dan
banyak membaca.
2. Meningkatkan kemahiran mengurus masa.
3. Meningkatkan kemahiran berfikir.
4. Meningkatkan cara pembelajaran
kendiri.
5. Meningkatkan ilmu dalam penggunaan
ICT (computer).
|
KBKK
|
Mendifinisi,
Mencirikan
|
Nilai
Murni
|
Kerjasama
, Tanggungjawab
|
BBM
|
PSK
Masteri Memori Melalui Peta Minda [PNI NEURON]
|
Refleksi
|
Semua
pelajar dapat menyatakan cirri-ciri PSH, menghuraikan kepentingan PSH dan
menerangkan langkah-langkah PSH dengan sebaiknya.
|
Date/Day
|
15
January 2014 / Thursday
|
Class
|
5S3
[30 students]
|
Time
|
0705
– 0815
|
Subject
|
Mathematics
|
L.
Area
|
1.0
: Number Bases
|
L.
Objectives
|
1.1 : Understand and use the concept
of number in bases two, eight and
five.
|
L.
Outcome
|
(i) : State zero, one, two, three, ….., as a
number in base
(a)
two, (b) eight ,
(c) five
(ii) : State the value of a digit of a number
in base
(a) two, (b) eight,
(c) five
(iii) : Write a number in base
(a)
two, (b) eight ,
(c) five
in expanded notation.
(iv)
: Converting numbers in base two, eight of five to numbers in base
ten and vice versa
(v) : Converting a number in a certain base to
a number in another base.
(vi)
: Addition and subtraction of two binary numbers.
|
L.
Activity
|
1.
Allow the students to solve 26 objective questions in the class.
2.
Guide the students in solving the questions.
3.
Discuss the solution for each question with the students.
|
CCTS
|
Stating,
Converting, Problems solving.
|
Noble
value
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
Mathematics
F5 Practice Makes Perfect [Pelangi]
|
Reflections
|
Most
of the students able to solve all the questions given.
|
Date/Day
|
15
January 2014 / Thursday
|
Class
|
5MPV
[25 students]
|
Time
|
1130
– 1240
|
Subject
|
Mathematics
|
L.
Area
|
1.0
: Number Bases
|
L.
Objectives
|
1.1 : Understand and use the concept
of number in bases two, eight and
five.
|
L.
Outcome
|
(v) : Converting a number in a certain base to
a number in another base.
(vi)
: Addition and subtraction of two binary numbers.
|
L.
Activity
|
1.
Explain example 6, 7, 8 and 9 to the students.
2.
Allow the students to do Check Point 4, 5, 6, 7 and 8 in the class.
3.
Guide the students in solving the questions.
4.
Discuss the solution for each question with the students.
|
CCTS
|
Converting,
Problems solving.
|
Noble
value
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
Modul
Pengajaran & Pembelajaran Matematik Tingkatan 5
[NILAM
Publication Sdn. Bhd.]
|
Reflections
|
Most
of the students able to solve the questions given with the teacher’s
guidance.
|
Date/Day
|
16
January 2013 / Friday
|
Class
|
5S3
[30 students]
|
Time
|
0940
– 1040
|
Subject
|
Additional
Mathematics
|
L.
Area
|
1.0
: Progressions
|
L.
Objectives
|
1.1
: Arithmetic Progressions [AP]
Sequence – set of numbers written in
some particular order, T1, …Tn
Series – sum of the terms in a
sequence, Sn = T1 + T2 + T3 + ….
+ Tn
First term, a = T1
Common difference, d = Tn+1
– T1 ; n = 1, 2, 3, ……
n th term, Tn =
a +(n + 1)d
Sum of the first n th
terms, Sn =
Sn =
l – the last term
|
L.
Outcome
|
1.1.4
: Finding the sum of an arithmetic progression
(a) : Sum of the first n terms of
an arithmetic progression
(b) : Sum of a specific number of
consecutive terms
1.1.5
: Solving problems involving arithmetic progressions
|
L.
Activity
|
1.
Explain example 6, 7, 8, 9 and 10 to the students.
2.
Allow the students to do Exercises in the class.
3.
Guide the students in solving the questions.
4.
Discuss the solution for each question with the students.
|
CCTS
|
Identifying
characteristics, Determining, Problem Solving
|
Noble
value
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
TOP
UP Additional Mathematics [Pelangi]
Modul
Bestari SPM Additional Mathematics [Ilmu Bakti]
|
Reflections
|
Most
of the students able to solve the questions given with the teacher’s
guidance.
|
Date/Day
|
16
January 2013 / Friday
|
Class
|
5S2
[31 students]
|
Time
|
1040
– 1140
|
Subject
|
Additional
Mathematics
|
L.
Area
|
1.0
: Progressions
|
L.
Objectives
|
1.1
: Arithmetic Progressions [AP]
Sequence – set of numbers written in
some particular order, T1, …Tn
Series – sum of the terms in a
sequence, Sn = T1 + T2 + T3 + ….
+ Tn
First term, a = T1
Common difference, d = Tn+1
– T1 ; n = 1, 2, 3, ……
n th term, Tn =
a +(n + 1)d
Sum of the first n th
terms, Sn =
Sn =
l – the last term
|
L.
Outcome
|
1.1.1
: Identifying characteristics of arithmetic progressions
1.1.2
: Determining whether a given sequence is an arithmetic
progression.
1.1.3
: Terms in arithmetic progressions
(a) : Determine specific terms in
arithmetic progressions
(b) : Determine the number of
terms in arithmetic progressions
|
L.
Activity
|
1.
Explain example 1 to the students.
2.
Allow the students to do Exercises in the class.
3.
Guide the students in solving the questions.
4.
Discuss the solution for each question with the students.
|
CCTS
|
Identifying
characteristics, Determining, Working out mentally
|
Noble
value
|
Cooperation
, Responsible
|
Teaching’s
Aids
|
TOP
UP Additional Mathematics [Pelangi]
Modul
Bestari SPM Additional Mathematics [Ilmu Bakti]
|
Reflections
|
Most
of the students able to solve the questions given with the teacher’s
guidance.
|
Tarikh
/ Hari
|
17
Januari 2015 / Sabtu
|
Aktiviti
|
Perhimpunana
& Perarakan Maulidur Rasul
|
Masa
|
7.00
pagi
|
Tempat
|
Dewan
Masyarakat Serian
|
No comments:
Post a Comment